Consider (eq:a):
$$ \alpha = \beta $$ (a)
@equation(id)
x = \sum_{i=1}{N} i
@/
$ y=\sum_{i=1}^n g(x_i) $
\begin{align}
(a+b)^3 &= (a+b)^2(a+b)\\
&=(a^2+2ab+b^2)(a+b)\\
&=(a^3+2a^2b+ab^2) + (a^2b+2ab^2+b^3)\\
&=a^3+3a^2b+3ab^2+b^3
\end{align}
\[
\left|\sum_{i=1}^n a_ib_i\right|
\le
\left(\sum_{i=1}^n a_i^2\right)^{1/2}
\left(\sum_{i=1}^n b_i^2\right)^{1/2}
\]
\[
\left|\sum_{i=1}^n a_ib_i\right|
\le
\left(\sum_{i=1}^n a_i^2\right)^{1/2}
\left(\sum_{i=1}^n b_i^2\right)^{1/2}
\]