Introduction to Linear Algrebra
Consider (eq:a):$$ \alpha = \beta $$ (a)
@equation(id)x = \sum_{i=1}{N} i@/
$ y=\sum_{i=1}^n g(x_i) $
\begin{align}(a+b)^3 &= (a+b)^2(a+b)\\&=(a^2+2ab+b^2)(a+b)\\&=(a^3+2a^2b+ab^2) + (a^2b+2ab^2+b^3)\\&=a^3+3a^2b+3ab^2+b^3\end{align}
\[\left|\sum_{i=1}^n a_ib_i\right|\le\left(\sum_{i=1}^n a_i^2\right)^{1/2}\left(\sum_{i=1}^n b_i^2\right)^{1/2}\]